Globally Optimal Least Squares Solutions for Quasiconvex 1D Vision Problems
نویسندگان
چکیده
Solutions to non-linear least squares problems play an essential role in structure and motion problems in computer vision. The predominant approach for solving these problems is a Newton like scheme which uses the hessian of the function to iteratively find a local solution. Although fast, this strategy inevitably leeds to issues with poor local minima and missed global minima. In this paper rather than trying to develop an algorithm that is guaranteed to always work, we show that it is often possible to verify that a local solution is in fact also global. We present a simple test that verifies optimality of a solution using only a few linear programs. We show on both synthetic and real data that for the vast majority of cases we are able to verify optimality. Further more we show even if the above test fails it is still often possible to verify that the local solution is global with high probability.
منابع مشابه
Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method
Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...
متن کاملExact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملRelationship between the optimal solutions of least squares regularized with L0 -norm and constrained by k-sparsity
Two widely used models to find a sparse solution from a noisy underdetermined linear system are the constrained problem where the quadratic error is minimized subject to a sparsity constraint, and the regularized problem where a regularization parameter balances the minimization of both quadratic error and sparsity. However, the connections between these two problems have remained unclear so fa...
متن کاملOptimal Algorithms in Multiview Geometry
This is a survey paper summarizing recent research aimed at finding guaranteed optimal algorithms for solving problems in Multiview Geometry. Many of the traditional problems in Multiview Geometry now have optimal solutions in terms of minimizing residual imageplane error. Success has been achieved in minimizing L2 (least-squares) or L∞ (smallest maximum error) norm. The main methods involve Se...
متن کاملVerifying global minima for L2 minimization problems
We consider the least-squares (L2) triangulation problem and structure-and-motion with known rotatation, or known plane. Although optimal algorithms have been given for these algorithms under an L-infinity cost function, finding optimal least-squares (L2) solutions to these problems is difficult, since the cost functions are not convex, and in the worst case can have multiple minima. Iterative ...
متن کامل